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Abstract

We explore differential and algebraic operations on the exterior product of spinor representations and
their twists that give rise to cohomology, the spin cohomology. A linear differential operator d is introduced
which is associated to a connection ∇ and a parallel spinor ζ, ∇ζ = 0, and the algebraic operators D(p)

are constructed from skew-products of p gamma matrices. We exhibit a large number of spin cohomology
operators and we investigate the spin cohomologies associated with connections whose holonomy is a
subgroup of SU(m),G2, Spin(7) and Sp(2). In the SU(m) case, we find that the spin cohomology of complex
spin and spinc manifolds is related to a twisted Dolbeault cohomology. On Calabi-Yau type of manifolds
of dimension 8k + 6, a spin cohomology can be defined on a twisted complex with operator d +D which
is the sum of a differential and algebraic one. We compute this cohomology on six-dimensional Calabi-Yau
manifolds using a spectral sequence. In the G2 and Spin(7) cases, the spin cohomology is related to the de
Rham cohomology.
© 2006 Published by Elsevier B.V.
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1. Introduction

On spin manifolds apart from the exterior derivative d and the associated de Rham complex
(Λ∗(M), d), one can define the Dirac operator (∆(M),D), where ∆(M) is the spin bundle.1 On
complex manifolds, the Dirac operator decomposes as D = D + D̄ and the spin representation
can be graded such that (∆(M), D̄) can turn into a (graded) complex. The associated cohomology
is called spinor cohomology [1].

∗ Tel.: +44 207 848 2227; fax: +44 7848 2017.
E-mail address: gpapas@mth.kcl.ac.uk.

1 We adopt the notation to denote a representation and its associated bundle with the same symbol, e.g. ∆ = ∆(Rn)
denotes the spin representation of Spin(n) and ∆ = ∆(M) denotes also the spin bundle over M. In addition, we shall
denote the bundles and their sections with the same symbol. Λ∗ denotes the space of forms.
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In even dimensions, the complex Dirac spin represenation is reducible and decomposes as
∆ = ∆− ⊕∆+. Apart from the spin representation ∆ both the exterior power, C = Λ∗(∆∗)
(C± = Λ∗(∆±)), and the symmetric product, Sym∗(∆∗) (Sym∗(∆±)), of the dual spinor repre-
sentation∆∗ (∆± = (∆±)∗) have found applications in various problems in physics. The former
has applications in supermanifolds. In particular, all real supermanifolds that appear in the context
of supersymmetry are isomorphic to C (C±) [2]. The latter is a model for the odd forms on su-
permanifolds and has appeared in the context of string theory [8] and the theory of deformations
of the field equations of supersymmetric gauge theories and supergravity in superspace [6,7]. It
turns out that the theory of deforming the field equations of the supersymmetric gauge theories
and supergravity can turn into a cohomological problem onΛ∗ ⊗ Sym∗ for the so called spinorial
cohomology.

Motivated by these developments in physics, the aim of this paper is to investigate various
cohomology operators that can be defined on C, C± and its various twistings. Let (M,g) be a spin
manifold equipped with a spin connection ∇, which is not necessarily the Levi-Civita connection
of the metric g. One can define a linear differential (spin) operator on C(M) or C±(M) as

dφ = ζΓ µ∧̄∇µφ, φ ∈ C(M), (1.1)

where ∧̄ is the wedge product in C, ζ a cospinor and {Γµ : µ = 1, . . . , dimM} are the gamma
matrices. In many applications, ζ is taken to be a parallel cospinor with respect to ∇, ∇ζ = 0. As
we shall see there are various cohomology theories that can be defined depending on the choice
of spinor ζ, the connection ∇. The operator d can always be defined on C. However, the restriction
of d on C± depends on the choice of ζ and the properties of the spinor inner products which in
turn depend on the dimension of the manifold M. One of our aims is to investigate the conditions
for d to be nilpotent, d2 = 0. These conditions can be expressed in terms of restrictions on the
cospinor ζ and on the curvature R of the connection ∇, in addition to ∇ζ = 0.

In addition to differential operators, we shall present a large number of algebraic cohomology
operatorsD(p) on some twisted complexes like for exampleΛ∗(M) ⊗ C(M) andΛ∗(M) ⊗ C±(M).
Some of these are constructed from skew-products of p gamma matrices. We investigate the
conditions for D2

(p) = 0 and relate them into the symmetry properties of gamma matrices.
The latter again depend on the dimension of the manifold M. In addition, we shall show that
D(p)d + dD(p) = 0 and so the cohomology of (Λ∗ ⊗ C, d +D(p)) and (Λ∗ ⊗ C±, d +D(p)) can
be computed using a spectral sequence. We shall refer collectively to all of these cohomology
theories with operators d, D(p) and d +D(p) as spin cohomologies.

We shall develop the general theory of spin cohomology. In particular, we shall compute the
conditions on the curvature of the underlying manifold for d2 = 0. We shall also explain the
relation to parallel spinors.

Next, we shall focus on a certain class of parallel spinors. In particular, we shall consider
manifolds which admit a spin connection ∇ induced from the tangent bundle with holonomy
contained in the groups SU(m) (n = 2m), Sp(k) (n = 4k), Spin(7) (n = 8) and G2 (n = 7),
where in parenthesis is the dimension of the manifold. A special class of examples of manifolds
with spin cohomology are those that appear in the Berger list and admit parallel spinors [3], for
non-simply connected manifolds see [4]. In these cases, ∇ is the Levi-Civita connection.

We shall show that for spin complex manifolds which admit a holomorphic connection ∇ with
hol∇ ⊆ SU(m), there are two differential spin cohomologies with operators d1 and d2 related
to two parallel spinors of the connection ∇. We refer to these spin cohomologies as complex
spin cohomologies. We shall show that d1 and d2 restrict on C±. In particular, one can con-
struct complexes (C+, d1) and (C+, d2) for dimM = 8k + 2, 8k + 6 and complexes (C−, d1) and
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(C−, d2) for dimM = 8k, 8k + 4. We give the Laplace operators associated with d1 and d2 using
a Spin(n)-invariant inner product. We show that the complex spin cohomology of (C−, d2) in all
dimensions is related to twisted Dolbeault cohomology. We extend this relation between this spin
cohomology and Dolbeault cohomology to complex spinc manifolds as well. The complex spin
cohomologies can be twisted with any holomorphic vector bundle. Apart form the differential
complex spin cohomologies, there is an algebraic spin cohomology operator D = D(1) and the
complex Λ∗,0 ⊗ C− on all such manifolds of dimension n = 8k + 6 and d2D+Dd2 = 0. The
cohomology of (Λ∗,0 ⊗ C−, d2 +D) can be computed using a spectral sequence. As an example,
we computed the cohomology of (Λ∗,0 ⊗ C−, d2 +D) on six-dimensional Calabi-Yau manifolds.

On manifolds which admit a connection with holonomy Sp(k), there are k + 1 differential spin
operators associated to k + 1 parallel spinors. Two of these are the same as those of the SU(2k)
manifolds investigated above. We shall not present a full analysis in this case but we shall express
a third spin differential operator on hyperKähler manifolds in terms of a Dolbeault operator.

On manifolds which admit a connection with holonomy Spin(7), there is one differential
spin operator d associated to one parallel spinor and a real complex (CR, d). In addition, d2 = 0
provided the connection ∇ is the Levi-Civita connection of a Spin(7) metric. The spin cohomology
is isomorphic to de Rham cohomology.

On manifolds which admit a connection with holonomy G2, there is again one differential
spin operator d and a real complex (CR, d). In addition, d2 = 0 provided the connection ∇ is
the Levi-Civita connection of a G2 metric. The spin cohomology of (CR, d) is isomorhic to two
copies of the de Rham cohomology relatively shifted by one degree.

This paper has been organized as follows: in Section 2, we summarize the properties of Clif-
ford algebras and spin representations which we use later. In Section 3, we explore the general
properties of the linear differential operators (1.1), define the twisted complexes and present the
algebraic cohomology operators. In Section 4, we investigate the properties of complex spin co-
homology and derive the conditions for d2 = 0. In addition we compute the Laplace operators. In
Section 5, we investigate various kinds of twisted complex cohomology. In Section 6, we relate the
complex spin cohomology to the Dolbeault cohomology for spin and spinc manifolds. In Section
7, we compute the complex spin cohomology and a twisted spin cohomology on a six-dimensional
Calabi-Yau manifold. In Section 8, we investigate the spin cohomology of manifolds that admit
a connection with holonomy contained in Sp(k). In Section 9, we explore the properties of some
real spin cohomologies. In Sections 10 and 11, we investigate the spin cohomology of manifolds
that admit a connection with holonomy Spin(7) and G2, respectively.

2. Preliminaries

The investigation of spin cohomology involves a detailed description of spinor representations.
Because of this and to establish notation, we shall review some aspects of spinor representations
in various dimensions [3,5]. We shall focus on the manifolds with Euclidean signature but the
analysis can be easily extended to other signatures.

Let V = R
n be a real vector space equipped with the standard Euclidean inner product. If

n = 2m even, the complex spin (Dirac) representation of Spin(2m),∆ = ∆(V ), is reducible and
decomposes to two irreducible representations, ∆ = ∆+ ⊕∆−. To construct these spin repre-
sentations let e1, . . . , en be an orthonormal basis in R

n, n = 2m, and J be a complex structure in
V, J(ei) = ei+m. We identify V and its dual using the Euclidean inner product. Next consider the
subspaceU = R

m generated by e1, . . . , em. Clearly V = U ⊕ J(U). The Euclidean inner product
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on V can be extended to a hermitian inner product in VC = V ⊗ C denoted by 〈, 〉, i.e.

〈zµeµ,wνeν〉 =
∑
µ

z̄µwµ, (2.1)

where z̄ is the standard complex conjugate of z in VC. The space of spinors ∆(V ) = Λ∗(UC),
where UC = U ⊗ C. In addition, ∆+ = Λeven(UC) and ∆− = ΛoddUC. The spinors in ∆+ are
called chiral while those in ∆− anti-chiral. The inner product (2.1) can be easily extended to ∆
and it is called the Dirac inner product on the space of spinors. The generators of the Clifford
algebra eµ are represented on ∆ as

Γ (ei)η = ei · η = ei ∧ η+ ei�η, i ≤ m

Γ (em+i)η = ei+m · η = −iei ∧ η+ iei�η, i ≤ m,
(2.2)

where ei� is the adjoint of ei∧ with respect to 〈, 〉. It is convenient to denote the generators
Γ (eµ) = Γµ and they are often called gamma matrices. Clearly Γµ : ∆± → ∆∓. The linear
maps Γµ are hermitian with respect to the inner product 〈, 〉, 〈Γµη, θ〉 = 〈η, Γµθ〉, and satisfy the
Clifford algebra relations eµeν + eνeµ = ΓµΓν + ΓνΓµ = 0, for µ = ν, (eµ)2 = (Γµ)2 = 1.

Next define the maps A = Γ1Γ2 . . . Γm and B = Γm+1 . . . Γn and the inner products on ∆ as

A(η, θ) = 〈A(η̄), θ〉
B(η, θ) = 〈B(η̄), θ〉, (2.3)

which we denote with the same symbol, where η̄ is the standard complex conjugate of η inΛ∗(VC)
The inner products A,B are sometimes also called charge conjugation matrices. These have the
following properties:

A(η, θ) = (−1)(1/2)m(m−1)A(θ, η)

B(η, θ) = (−1)(1/2)m(m+1)B(θ, η).
(2.4)

Therefore, A (B) is symmetric for m = 4k, 4k + 1 (m = 4k, 4k + 3) and skew-symmetric for
m = 4k + 2, 4k + 3 (m = 4k + 2, 4k + 1). In addition, we have

A(Γµη, θ) = (−1)m−1A(η, Γµθ), 1 ≤ µ ≤ n

B(Γµη, θ) = (−1)mB(η, Γµθ), 1 ≤ µ ≤ n
(2.5)

and

A(Γµη, Γµθ) = (−1)m−1A(η, θ), 1 ≤ µ ≤ n

B(Γµη, Γµθ) = (−1)mB(η, θ), 1 ≤ µ ≤ n.
(2.6)

Therefore, A is Pin(2m) invariant for m = 4k + 1, 4k + 3 while B is Pin(2m) invariant for m =
4k, 4k + 2. Both A,B are Spin(n)-invariant. A consequence of the above relations is

A(η, Γµθ) = (−1)(1/2)(m−1)(m+2)A(θ, Γµη)

B(η, Γµθ) = (−1)(1/2)m(m+3)B(θ, Γµη)
(2.7)

Therefore, the gamma-matrices are symmetric with respect to the inner product A(B) for m =
4k + 1, 4k + 2 (m = 4k, 4k + 1) while they will be skew-symmetric for m = 4k, 4k + 3 (m =
4k + 2, 4k + 3).

Because of the existence of invariant non-degenerate inner products the dual of ∆∗ can be
identified with ∆. To make this identification precise, let us denote with C either A or B. Given a
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basis {εA;A = 1, . . . , dim∆} in∆ let us denote with {εA;A = 1 . . . dim∆} the dual basis in∆∗,
εB(εA) = ∆BA. The inner product C−1 in ∆∗ induced by C is

∑
E

C−1(εE, εA)C(εE, εB) = ∆AB (2.8)

The co-spinor C(η) associated with the spinor η under the isomorphism C is defined as
C(η)(θ) = C(θ, η), η, θ ∈ ∆, i.e. in the above basis ηA = CABη

B. The inverse transformation
C−1 is defined as C−1(ψ)(χ) = C−1(ψ, χ), ψ, χ ∈ ∆∗, i.e. ψA = ψB(C−1)BA. Notice that the
maps A,B : ∆± → ∆± for m = 4k, 4k + 2 while A,B : ∆± → ∆∓ for m = 4k + 1, 4k + 3.
Therefore, in the former case the dual ∆± of ∆± under A,B is identified with ∆±,∆± = ∆±
while in the latter the dual ∆± of ∆± is identified with ∆∓, ∆± = ∆∓.

There are two ways to construct the spin representation ∆ in odd dimensions. One is to
write V ′ = R

2m+1 = V ⊕ R〈e2m+1〉 and extend the Euclidean inner product (2.1) from V to V ′,
〈e2m+1, e2m+1〉 = 1, 〈V, e2m+1〉 = 0. The gamma matrices Γµ, 1 ≤ µ ≤ 2m, are defined as in the
even-dimensional case and

Γ2m+1 = imΓ1 . . . Γ2m. (2.9)

The Spin(2m+ 1) spin representation, ∆, is ∆ = ∆+ ⊕∆−, where ∆+,∆− are the Spin(2m)
spin representations. (There are no chiral spinors in odd dimensions.) The invariant inner product
on Spin(2m+ 1) representation ∆ is the Pin(2m) invariant inner product on ∆+ ⊕∆−.

Alternatively, we take V = U ⊕ J(U) as for n = 2m and writeU = U0 ⊕ R〈e2m〉. Then V0 =
U ⊕ J(U0) has dimension 2m− 1. The gamma matrices are Γ̃µ = iΓµΓ2m, 1 ≤ µ ≤ 2m− 1,
where Γµ are the gamma matrices of the Spin(2m) spin representation. These induce a represen-
tation of Pin(2m− 1) onto the ∆± representations of Spin(2m).

For later convenience, we introduce the notation (CΓµ)(η, θ) = C(η, Γµθ) and similarly
(CΓµ1...µp )(η, θ) = C(η, Γµ1...µpθ), where

Γµ1...µp = 1

p!

∑
σ

(−1)|σ|Γµσ(1) . . . Γµσ(p) (2.10)

and σ is a permutation. The symmetry of the inner product and that of the gamma matrices can be
re-expressed asC(η, θ) = (−1)sCC(θ, η), where sC = 0 if C is symmetric and sC = 1 if C is skew-
symmetric, and similarly CΓµ(η, θ) = (−1)sΓ CΓµ(θ, η), where sΓ = 0 if CΓµ is symmetric and
sΓ = −1 if CΓµ is skew-symmetric. From these one can also find that

CΓµ1...µp (η, θ) = (−1)(1/2)p(p−1)(−1)(p+1)sC+psΓ CΓµ1...µp (θ, η). (2.11)

Similarly, we define (Γµ1...µpC
−1)(ψ, χ) = C−1(Γµ1...µpψ, χ), where χ,ψ ∈ ∆∗.

The product of two co-spinor representations can be decomposed in terms of forms as ∆∗ ⊗
∆∗ = ∑n

p=1Λ
p(V ) ⊗ C. In particular, one can write

(ψ ⊗ χ)(η⊗ θ)

= 1

dim∆n

⎛
⎝C−1(ψ, χ)C(η, θ)+

n∑
p=1

(−1)p(sΓ+sC)

p!
(Γµ1...µpC−1)(ψ, χ)CΓµ1...µp (η, θ)

⎞
⎠,

(2.12)
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where η, θ ∈ ∆ and ψ, χ ∈ ∆∗. The above decomposition is valid after restricting to ∆± co-
spinor representations and to real co-spinor representations. We shall state the formulae later. The
formula (2.12) is also known as Fierz identity.

In the above formalism, it is possible to explicitly present the spinors that are invariant under
the action of certain subgroups of Spin(n). We shall mainly focus on the subgroupsG ⊂ Spin(n)
which arise as special holonomy groups in the Berger classification and the associated manifolds
admit a parallel spinor. These spinors have been given in [3]. Here, we shall summarize the results
and adjust the various formulae because of differences in the conventions.

(i) G = SU(m) ⊂ Spin(2m). The invariant spinors under the SU(m) ⊂ Spin(2n) are 1, e1 ∧
e2 ∧ . . . ∧ em. This can be easily seen by decomposing the Spin(2m) representations ∆±
under SU(m). Ifm = 4k, 4k + 2 both invariant spinors are of the same chirality, i.e. they are
elements of ∆+ while if m = 4k + 1, 4k + 3, they have opposite chiralities. In addition ob-
serve that Γj − iΓm+j(1) = 0 and Γj + iΓm+j(e1 ∧ . . . em) = 0, j = 1, . . . , m. Therefore,
the invariant spinors are pure spinors with respect to the holomorphic and antiholomorphic
parts of the decomposition of V ⊗ C with respect to the complex structure J.

(ii) G = Sp(k) ⊂ Spin(4k). The invariant spinors are 1, e1 ∧ e2∧, . . . ,∧e2k, ω, ω
2, . . . , ωk−1

whereω = e1 ∧ e2 + · · · + e2k−1 ∧ e2k which is the symplectic form inU ⊂ ∆+. Therefore,
there are k + 1 parallel spinors.

(iii) G = Spin(7) ⊂ Spin(8). The invariant spinor is 1√
2

(e1 − e2 ∧ e3 ∧ e4).

(iv) G = G2 ⊂ Spin(7). The invariant spinor is 1√
2

(e1 − e2 ∧ e3 ∧ e4).

3. Differential and algebraic operations on spinors

3.1. First order differential operators

Let M be a spin manifold equipped with a spin connection ∇ which admits a parallel spinor
ζ, ∇ζ = 0. We shall focus on even-dimensional manifolds. Some of the results can be easily
extended to the odd dimensional case. We define C± = Λ∗(∆±) and C = Λ∗(∆∗) equipped with
the wedge product ∧̄.

Definition 1. The spin operator d is a linear differential operator d : C(M) → C(M), and similarly
d : C±(M) → C±(M), such that

dφ =
n∑

µ=1

C
µ
ζ ∧̄∇µφ, (3.1)

where Cµζ (η) = CΓµ(ζ, η).

Clearly d : C� → C�+1 and d : C�± → C�+1
± . Choosing a basis in the space of co-spinors {εA :

A = 1, . . . , 2m}, the d operator can be written as

dφA1,A2...A�+1 = ζBCΓ
µ
BA1

∇µφA2...A�+1

+cyclic(A1, A2, . . . , A�+1)B,A1, . . . , A�+1 = 1, . . . , dim∆. (3.2)

The operator d depends on the choice of parallel spinor ζ and the connection ∇. Although subject
to the data above, the operator d can always be defined on C(M), the restriction on d onto C+
or C− depends on the choice of the parallel spinor ζ. Since this depends on the dimension of
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the manifold and the choice of the parallel spinor, we shall explain the general properties of the
operator d acting on C, and later we shall specialize into the various cases.

Evaluating d2, we find

d2φ = 1

2
C
µ
ζ ∧̄Cνζ ∧̄Rµνφ, (3.3)

where R is the curvature of the connection ∇. Under certain conditions the operator d can be
nilpotent, d2 = 0. This depend on the choice of the spinor ζ and the connection ∇. There are two
large classes of examples for which d2 = 0.

• Group manifolds equipped with the left or the right invariant connections.
• Manifolds that admit a pure parallel spinor.

In the case of group manifolds R = 0. Therefore, d operators associated with the left- or right-
invariant connections are all nilpotent. The different d operators that can be constructed on group
manifolds are determined by the orbits of Spin(n) in ∆.

A spinor is pure if the subspace

W(ζ) = {v ∈ VC, vµΓ µζ = 0} (3.4)
of VC has dimension 1

2 dimC(VC). We can use the inner product to decompose VC = W(ζ) ⊕ Z.

Proposition 1. The operator d is nilpotent if, in addition to ∇ζ = 0, the curvature R vanishes
along the subspace Λ2(Z) ⊂ Λ2(VC), i.e.

R|Λ2(Z) = 0. (3.5)

Proof. The curvature R can be viewed as a map from R : Λ2(M) → Λ2(M). Therefore,

d2φ = 1

2
C
µ
ζ ∧̄Cνζ ∧̄Rµνφ = 1

2
[Cµζ ∧̄Cνζ ∧̄Rµν]|Λ2(Z)φ = 0. � (3.6)

Clearly, this condition can be generalized to spinors ζ which are not pure but W(ζ) = ∅.
The conditions on the curvature required for d2 = 0 can also be determined using (2.12). In

particular, we have

Proposition 2. The conditions on the curvature R for d2 = 0 can be expressed in terms of the
forms associated with the parallel spinor ζ.

Proof. We compute d2 using (2.12) to find

d2φ = 1

2 dim∆n

⎛
⎝ n∑
p=0

(−1)p(sΓ+sC)

p!
(Γ ρ1...ρpC−1)(Cµζ , C

ν
ζ )

⎞
⎠CΓρ1...ρp∧̄Rµνφ

= 1

2 dim∆n

⎛
⎝ n∑
p=0

(−1)(p+1)(sΓ+sC)

p!
C(ζ, Γ µΓ ρ1...ρpΓ νζ)

⎞
⎠CΓρ1...ρp∧̄Rµνφ

= 1

2 dim∆n

×
⎛
⎝ n∑
p=0

(−1)(p+1)(sΓ+sC)

p!
[C(ζ, Γ µρ1...ρpνζ) + p(p− 1)gµρ1C(ζ, Γ ρ2...ρp−1ζ)gρpν]

⎞
⎠

×CΓρ1...ρp∧̄Rµνφ, (3.7)
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where g is the metric on the manifold. In the above sum over p only the terms with CΓρ1...ρp

skew-symmetric contribute. Sufficient conditions on the curvature for d2 = 0 are

[C(ζ, Γ µρ1...ρpνζ) + p(p− 1)C(ζ, Γ ρ2...ρp−1ζ)gµρ1gνρp ]Rµν = 0 (3.8)

for 1
2p(p− 1) + (p+ 1)sC + psΓ ∈ 2Z + 1. In some cases, these conditions are also necessary.

�

Provided that the conditions for d2 = 0 are met, we can define a cohomology theory associated
with the linear differential operator d.

Definition 2. The spin cohomology, Hd(C), is that of the graded complex (C, d), d2 = 0, where
d is as in (3.1). Similarly, the spin cohomology, Hd(C±), is that of the graded complex (C±, d).

3.2. Twisted complexes

There are several ways to twist the complexes C and C±. Here, we shall consider two cases
which we shall describe below.

3.2.1. The complexes C ⊗ E and C± ⊗ E

Let E be a vector bundle E over the spin manifold M equipped with a connection ∇E. One way
to twist the complexes C and C± is to consider C ⊗ E and C± ⊗ E. Let ζ be a parallel spinor with
respect to a spin connection ∇M on the manifold M induced from the tangent bundle, ∇Mζ = 0.
The spin differential operator d is

dφ = C
µ
ζ ∧̄∇µφ, (3.9)

where ∇ = ∇M ⊗ 1 + 1 ⊗ ∇E on C ⊗ E or on C± ⊗ E and φ ∈ C ⊗ E or C± ⊗ E, respectively.
The condition d2 = 0 implies conditions on both the curvature R of M and the curvature F of

the connection ∇E of the bundle E.

Theorem 1. The operator d is nilpotent providing that both the curvature R of the manifold M
and the curvature R of E satisfy either (3.5) or (3.7).

Proof. This is similar to the proof given in the previous section. �

There is a particular twisted complex of the this type that we shall consider by taking E =
Λ∗(M) orE = Λ∗(M) ⊗ C. We shall see that in this case one can define certain algebraic operators
with are nilpotent. The spin cohomology, Hd(C ⊗ E), of the linear operator d for the twisted
complex (C ⊗ E, d), can be defined in analogy with the spin cohomology of the untwisted case
in the previous section. This definition can be extended for Hd(C± ⊗ E).

3.2.2. The complexes C(E) = Λ∗(∆∗ ⊗ E) and C(E)± = Λ∗(∆± ⊗ E)
These complexes allow the definition of the spin operator d operator on manifolds that do not

admit a spin structure but admit a spinc or in general a SpinG structure. Another use of twisted
complexes C(E) is that they allow the imposition of a reality condition. It is known that there are
not real (Majorana) spin representations for n = 8k + 4 dimensional manifolds and so there is
not a real complex C. However, it is possible to construct a real complex C(E) by taking E to be a
rank two SU(2) bundle.
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Let ζ be a parallel section of ∆⊗ E with respect to a connection D = ∇M ⊗ 1 + 1 ⊗ ∇E,
where ∇M is a spin connection on the manifold M induced from the tangent bundle and ∇E is a
connection on the vector bundle E. The operator d on C(E) or C(E)± is defined as

dφ = C
µ
ζ ∧̄Dµφ, (3.10)

where ∧̄ is the wedge operation in Λ∗(∆∗ ⊗ E). One consequence of this definition is that ζ is
not necessary a parallel section of the spinor bundle but of ∆⊗ E.

The case that it is of most interest to us is that for which E is a line bundle. In this case, the
conditions for d2 = 0 can be expressed as conditions on the curvature R and F of the manifold
and of the line bundle, respectively. The formulae are similar to those in (3.5) and (3.7).

The construction can be further generalized in the case for which there is no a spin structure
but there is a spinc structure. In this case, although the spin bundle ∆ is not well-defined ∆⊗ E

is and so is C(E).
Provided that the conditions for d2 = 0 are met, we can define the twisted spin cohomology,

Hd(C(E)), of the graded complex (C(E), d). Similary we can define the twisted spin cohomology,
Hd(C±(E)), of the graded complex (C±(E), d)

3.3. Algebraic operations

3.3.1. The algebraic operator D(p)
There are several algebraic cohomology operations that can be defined on the twisted com-

plexesΛ∗ ⊗ C,Λ∗ ⊗ C±, Sym∗ ⊗ C and Sym∗ ⊗ C±, where Sym∗ = ⊕∞
p=0Sym

p and Symp is the

symmetrized product of p copies of Λ1.
The maps CΓ (p) : ∆⊗∆ → Λp

CΓ (p)(η, θ) = 1

p!
CΓµ1...µp (η, θ)eµ1 ∧ . . . ∧ eµp (3.11)

are skew-symmetric, i.e. CΓ (p)(η, θ) = −CΓ (p)(θ, η), provided that 1
2p(p− 1) + (p+ 1)sC +

psΓ ∈ 2Z + 1 as it can been seen from (2.11).

Definition 3. The algebraic spin operator D(p) : Λq(M) ⊗ C�(M) → Λq−p(M) ⊗ C�+2(M) is

D(p)φ = (−1)(1/2)p(p−1)+�

2(q− p)!p!�!

×(CΓµ1...µp )A1A2φµ1...µpν1...νq−pA3,...,A�+2e
ν1 ∧ . . . ∧ eνq−p ⊗ εA1∧̄ . . . ∧̄εA�+2 ,

(3.12)

if q ≥ p and D(p) = 0 for p > q, where CΓ (p) is skew-symmetric.

It is straightforward to show that

Proposition 3. D(p) is nilpotent, D2
(p) = 0, provided that p ∈ 2Z + 1.

Proposition 4. The algebraic spin operator D(p) can be restricted on Λ∗ ⊗ C±, iff dimM =
8k + 2, 8k + 6.

Proof. It can be seen from the properties of spinor inner product C summarized in Section 2 that
for dimM = 8k + 2, 8k + 6, CΓ (p) : ∆± ⊗∆± → Λp, p ∈ 2Z + 1. �
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In what follows, when we refer to the algebraic spin operator onΛ∗ ⊗ C± complexes we shall
assume the condition of the above proposition applies and dimM = 8k + 2, 8k + 6.

The algebraic spin operator D(p) can be extended to twisted complexes Λ∗ ⊗ C ⊗ E and
Λ∗ ⊗ C± ⊗ E in a straightforward way. There is also an extension to the twisted complexes
Λ∗ ⊗ C(E) and Λ∗ ⊗ C±(E) provided that E is equipped with and inner product h. In particular,
we define

D(p) : Λq(M) ⊗ C�(E) → Λq−p(M) ⊗ C�+2(E) (3.13)

where

D(p)φ = (−1)(1/2)p(p−1)+�

2(q− p)!p!�!
(CΓµ1...µp ⊗ h)I1A1,I2A2φµ1...µpν1...νq−pI3A3...I�+2A�+2

eν1 ∧ . . . ∧ eνq−p ⊗ εI1A1∧̄ . . . ∧̄εI�+2A�+2 , (3.14)

if q ≥ p andD(p) = 0 for p > q. This operation is well defined provided that CΓ (p) ⊗ h is skew-
symmetric. This is the case when either CΓ (p) is symmetric and h is skew-symmetric or CΓ (p)

is skew-symmetric and h is symmetric. In all the above cases D2
(p) = 0 provided p ∈ 2Z + 1.

Definition 4. The algebraic spin cohomologyHD(p) (Λ
∗ ⊗ C) is defined as the cohomology of the

double graded complex (Λ∗ ⊗ C,D(p)). This definition can be extended to the rest of the twisted
and untwisted spin complexes.

A particular case of this operation is for p = 1. In this case, we have D = D(1) : Λ∗ ⊗ C →
Λ∗ ⊗ C, where

Dφ = (−1)�

2(q− 1)!�!
(CΓµ)A1A2φµ1ν1...νq−1A3...A�+2e

ν1 ∧ . . . ∧ eνq−1 ⊗ εA1∧̄ . . . ∧̄εA�+2 ,

(3.15)

if q ≥ 1 and D(p) = 0 for q = 0. In particular, D is defined on Λ∗ ⊗ C and Λ∗ ⊗ C ⊗ E for
m = 4k, 4k + 2 if C = A and for m = 4k + 3 if C = B. It is also defined on Λ∗ ⊗ C± and
Λ∗ ⊗ C± ⊗ E for m = 4k + 2 if C = A and for m = 4k + 3 if C = B, dimM = 2m. In the
twisted case Λ∗ ⊗ C(E), the operator D can be defined in all the cases for which E admits a fibre
inner product such that CΓ (1) ⊗ h is skew-symmetric.

Proposition 5. D(p) anti-commutes with the differential operator d, i.e.

dD(p) +D(p)d = 0. (3.16)

Proof. We can show this after a direct computation using the property of the connection ∇M of
the manifold to be a spin connection induced from the tangent bundle. In the twisted case (3.14)
this also the case provided that ∇Eh = 0. �

The differential and algebraic spin cohomology operators on the various untwisted and twisted
complexes above can be combined into an new spin cohomology operator d +D. The new coho-
mology operator d +D defines a new cohomology,Hd+D, which can be computed using spectral
sequences. We shall describe such computation on Calabi-Yau manifolds of dimension six.

3.3.2. The algebraic operator D̂
Apart from the D(p) algebraic operator, there is another algebraic operation D̂.
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Definition 5. The algebraic operator D̂ on the complex Sym∗ ⊗ C is

D̂ : Symq(M) ⊗ C� → Symq−1(M) ⊗ C�+1, (3.17)

where

D̂φ = (−1)�
1

(q− 1)!�!
(Cζ)

µ
A1
φµν1,... νq−1A2...A�+1e

ν1 ∧ . . . ∧ eνq−1 ⊗ εA1∧̄ . . . ∧̄εA�+1

(3.18)

if q ≥ 1 and D̂ = 0 if q = 0.

It is straightforward to extend this definition to the other untwisted and twisted complexes.
Moreover, one can show that

Proposition 6. D̂ is nilpotent, D̂2 = 0.

As in the case of D(p) algebraic spin operator

Proposition 7. D̂ anti-commutes with the differential operators d, i.e.

dD̂+ D̂d = 0. (3.19)

A consequence of this is that one can define a new cohomology operator d + D̂ and an asso-
ciated cohomology Hd+D̂ which can be computed using a spectral sequence.

Proposition 8. Let D̂ be the spin algebraic operator on Sym∗ ⊗ C defined as in (3.18). If Cζ is
an isomorphism, then H∗

D̂
= C.

Proof. Since Cζ is an isomorphism, then Sym∗ ⊗ C = Sym∗ ⊗Λ∗. Symp ⊗Λq can be decom-
posed under GL(n,C) into two irreducible representations. These have dimensions

∆1 = n(n+1)...(n+p−1)(n−1)...(n−q)
(p+q)(p−1)!q!

∆2 = n(n+1)...(n+p)(n−1)...(n−q+1)
(p+q)p!(q−1)! .

(3.20)

Clearly KerD̂|Sym0×Λq = Λq. In addition

KerD̂|Symp×Λq = D̂(Symp+1 ×Λq−1), p > 0, (3.21)

with dim KerD̂|Symp×Λq = ∆2 Therefore, all cohomologyHp,q

D̂
= 0 for p > 0 andH0,q

D̂
= Λq =

Cq. �

This theorem can be thought as a consequence of the Spencer cohomology [9]. Clearly, the
above result can be generalized to Sym∗ ⊗ C± and twisted complexes.

4. Manifolds with connections of holonomy SU(m) and spin cohomology

As we have mentioned on even-dimensional Riemannian manifolds, there are two complex
spin representations ∆±. In addition there are real spin representations provided that m = 4k +
1, 4k + 3, 4k, dimM = 2m. In what follows, we shall focus on the spin cohomology associated
the complex representations. The spin cohomology associated with real representations will be
investigated later.
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4.1. Complex spinor representations

Let M be a Riemannian manifold equipped with a spin connection ∇ with hol(∇) ⊆ SU(m).
We take that the metric on M to be compatible with the parallel almost complex structure J. There
are two distinct ∇-parallel complex spinors. These are given by ζ1 = 1, ζ2 = e1 ∧ . . . ∧ em. These
spinors are of different chirality ifm = 4k + 1, 4k + 3 and of the same chirality ifm = 4k, 4k + 2.
Therefore, there are two first order differential spin operators d1 and d2 associated with the
spinors ζ1 and ζ2, respectively. If m is odd, d1 : C+ → C+ and d2 : C− → C− while if m is even,
d1, d2 : C− → C−. We shall treat the two cases separately.

4.1.1. The m = 4k + 1, 4k + 3 case

Theorem 2. The operator d1 : C+ → C+ is nilpotent, d2
1 = 0, provided that the (2,0) part of the

curvature R of the connection ∇ with respect to the almost complex structure J vanishes.

Proof. For this we compute d2
1 on C�+ to find

d2
1φ = 1

2
C
µ
1 ∧̄Cν1∧̄Rµνφ, (4.1)

where Rµν = [∇µ,∇ν] is the curvature of the connection ∇. In a spinor basis {εa : a =
1, . . . , dim∆+}, the above expression can be written as

d2
1φ = 1

2�!
(C1)µa1

(C1)νa2
(Rµνφ)a3...a�+2 ε

a1 ∧ εa2 ∧ εa3 ∧ . . . ∧ εa�+2 . (4.2)

Observe that the product representation ∆+ ⊗∆+ can be decomposed as

∆+ ⊗∆+ =
m−3

2∑
p=1

Λ2p+1(VC) ⊕Λm+(VC). (4.3)

In particular using (2.12), we have

χ⊗ ψ(η⊗ θ)= 1

dimC∆+

m−3
2∑

p=1

(−1)(2p+1)(sΓ+sC)

(2p+ 1)!
(Γµ1...µ2p+1C−1)(χ,ψ)CΓµ1...µ2p+1 (η, θ) .

(4.4)

The only non-vanishing form associated with ζ1 spinor is the m-form given by

ε1 = 1

m!
C(ζ1, Γρ1...ρmζ1)eρ1 ∧ . . . ∧ eρm. (4.5)

Moreover, from section two, we have that CΓρ1...ρm is symmetric and CΓρ1...ρm−2 is skew-
symmetric. Applying the formula (4.4) for χ = C

µ
1 and ψ = Cν1, we find that the only non-

vanishing term is

d2
1φ = 1

2

(−1)(m−2)(sΓ+sC)

(m− 2)!dimC∆+
(Γ ρ1...ρm−2C−1)(Cµ1 , C

ν
1)CΓρ1...ρm−2∧̄Rµνφ

= 1

2

(−1)(m−1)(sΓ+sC)

(m− 2)!dimC∆+
C(1, Γ µρ1...ρm−2ν1)CΓρ1...ρm−2∧̄Rµνφ. (4.6)
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Therefore, d2
1 = 0, if the (2,0) component of the curvature R vanishes since (Γj − iΓj+m)1 = 0

and so ε1 is an (0,m) form. �
Theorem 3. The operator d2 : C− → C− is nilpotent, d2

2 = 0, provided that the (0,2) part of the
curvature R of the connection ∇ with respect to the almost complex structure J vanishes.

Proof. The proof of this is similar to the one presented above for the case of the ζ1 parallel spinor.
One difference is the decomposition

∆− ⊗∆− =
m−3

2∑
p=1

Λ2p+1(VC) ⊕Λm−(VC). (4.7)

A direct computation reveals that

d2
2φ = 1

2

(−1)(m−2)(sΓ+sC)

(m− 2)!dimC∆+
(Γ ρ1...ρm−2C−1)(Cµ2 , C

ν
2)CΓρ1...ρm−2∧̄Rµνφ

= 1

2

(−1)(m−1)(sΓ+sC)

(m− 2)!dimC∆+
C(e1 ∧ . . . ∧ em, Γ µρ1...ρm−2νe1 ∧ . . . ∧ em)CΓρ1...ρm−2∧̄Rµνφ.

(4.8)

Using (Γj + iΓj+m)e1 ∧ . . . ∧ em = 0, we conclude that d2
2 = 0 if the (0,2) part of the curvature

R vanishes. �
Corollary 1. The operator d = d1 ⊕ d2 : C+ ⊕ C− → C+ ⊕ C− is nilpotent provided that the
curvature R of the connection ∇ is (1,1) with respect to the almost complex structure J.

Proof. It follows immediately from the two theorems above. �
We therefore conclude that there are three kinds of untwisted differential spin cohomology

associated with a manifold that admits a connection with holonomy contained in SU(m),m =
4k + 1, 4k + 3. The complexes are (C+, d1), (C−, d2) and (C+ ⊕ C−, d1 ⊕ d2) and the associated
spin cohomologies are denoted as Hd1 (C+), Hd2 (C−) and Hd(C+ ⊕ C−), respectively.

4.1.2. The m = 4k, 4k + 2 case
In this case, both parallel spinors ζ1, ζ2 ∈ ∆+. Therefore, d1, d2 : C− → C−.

Theorem 4. The operators d1, d2 : C− → C− are nilpotent, d2
1 = 0 and d2

2 = 0, provided that
the either (2,0) or the (0,2) part of the curvature R of the connection ∇ with respect to the almost
complex structure J vanishes, respectively.

Proof. The proof of this statement is similar to that for the cases m = 4k + 1, 4k + 3 described
in the previous section. In particular, we have

∆− ⊗∆− =
m−2

2∑
p=0

Λ2p(VC) ⊕Λm−(VC). (4.9)

From the results of section two, the map CΓµ1...µm is symmetric and CΓµ1...µm−2 is skew-
symmetric with respect to both inner products C = A,B. The expressions for d2

1 and d2
2 are

given by (4.6) and (4.8), respectively. From these, it is straightforward to see that d2
1 = 0 (d2

2 = 0)
if the (0,2) ((2,0)) part of the curvature R of ∇ vanishes. �
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Since both operators d1, d2 act on the same complex, one can define the operator d = d1 + d2 :
C− → C−. If d2

1 = d2
2 = 0, d2 = d1d2 + d2d1. Therefore, d is nilpotent iff the operators d1, d2

anti-commute.

Theorem 5. The operator d1d2 + d2d1 = 0 iff the curvature of ∇ vanishes R = 0.

Proof. Applying the definition of d1 and d2, one can find that

(d1d2 + d2d1)φ = C
µ
1 ∧̄Cν2∧̄∇µ∇νφ − C

µ
1 ∧̄Cν2∧̄∇ν∇µφ = C

µ
2 ∧̄Cν1∧̄Rµνφ. (4.10)

The Kähler form associated with the parallel spinors is

Ω = −i
2C(ζ2, ζ1)

C(ζ2, Γµνζ1)eµ ∧ eν. (4.11)

It can then be seen that

CΓ(2p)(ζ2, ζ1) = 1

(2p)!
C(ζ2, Γρ1...ρ2pζ1)eρ1 ∧ . . . ∧ eρ2p = (−i)pC(ζ2, ζ1)

p!
∧p Ω. (4.12)

Applying (4.9), we find

(d1d2 + d2d1)φ = 1

dimC(∆+)

m
2∑

p=0

(−1)sC+sΓ
(2p)!

C(ζ2, Γ
µΓ ρ1...ρ2pΓ νζ1)CΓρ1...ρ2p∧̄Rµνφ

= 1

dimC(∆+)

m
2∑

p=0

(−1)sC+sΓ
(2p)!

[C(ζ2, Γ
µρ1...ρ2pνζ1)

+(2p)(2p− 1)gµρ1C(ζ2, Γ
ρ2...ρ2p−1ζ1)gρ2pν]CΓρ1...ρ2p∧̄Rµνφ,

(4.13)

where g is the metric on the manifold M. This can be rewritten as

(d1d2 + d2d1)φ = C(ζ2, ζ1)

dimC(∆+)

m
2∑

p=0

(−1)sC+sΓ
(2p)!

[
(−i)p+1(2p+ 2)!

2p+1(2p+ 1)(p+ 1)!

× ΩµνΩρ1ρ2 . . . Ωρ2p−1ρ2pCΓρ1...ρ2p∧̄Rµνφ + (−i)p−1(2p)!

2p−1(p− 1)!

× Ωρ2ρ3 . . . Ωρ2p−2ρ2p−1CΓρ1...ρ2p∧̄(RµνJ
µ
ρ1
Jνρ2p

+ Rρ1ρ2p )φ
]

(4.14)

For m = 4k, CΓ(2p) is symmetric for p = 2q while they are skew-symmetric for p = 2q+ 1.
Therefore, in this case only the latter terms contribute in the sum. Similarly for m = 4k + 2,
CΓ(2p) is skew-symmetric for p = 2q while they are symmetric for p = 2q+ 1. Therefore, only
the former terms contribute is the sum.

It is clear that if the (1,1) part of the curvature vanishes, then the proposition is sat-
isfied. However, the (2,0) and the (0,2) parts of the curvature vanish as well. Thus,
R = 0. �

We therefore conclude that there are three kinds of untwisted differential spin coho-
mology associated with a manifold that admits a connection with holonomy contained in
SU(m),m = 4k, 4k + 2. The complexes are (C−, d1), (C−, d2) and (C−, d = d1 + d2) and the
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associated spin cohomologies are denoted as Hd1 (C−), Hd2 (C−) and Hd(C−), respectively. Un-
like the case case where m = 4k + 1, 4k + 3, all three cohomologies are cohomologies of the
complex C−.

4.2. Adjoint operators and Laplacians

As we have mentioned in Section 2, ∆± are equipped with a Spin(n)-invariant inner product.
Because of this, one can find the adjoints of the spin cohomology operators d1, d2 and their
associated Laplacians. As in the previous section, we shall distinguish between the m = 4k + 1,
4k + 3 and m = 4k, 4k + 2 cases. This is because of the properties of the inner product are
different (see Section 2).

4.3. The m = 4k + 1, 4k + 3 case

We extend the inner product C−1 from ∆+ ⊕∆− to the space of sections of C+ ⊕ C− and
denote it with the same symbol. The inner product C−1 vanishes if it is restricted on either C+ or
C−.

Definition 6. The adjoint operator ∆1 : C− → C− of d1 : C+ → C+ is

C−1(φ, d1ψ) = C−1(δ1φ,ψ). (4.15)

Similarly, the adjoint operator ∆2 : C+ → C+ of d2 : C− → C− is

C−1(ψ, d2φ) = C−1(δ2ψ, φ). (4.16)

Using these adjoints, one can define two Laplace operators ∆1 = ∆2d1 + d1∆2 and ∆2 =
∆1d2 + d2∆1. The Laplace operator of d : C+ ⊕ C− → C+ ⊕ C− is ∆ = ∆1 ⊕∆2.

To compute the Laplace operator ∆1, we use the above definitions to find

∆1φ = −(−1)sC+sΓ (
C(ζ1, Γ

νΓ µζ2)∇µ∇νφ + (−1)sc+sΓ Cν1∧̄(Cµ2 �̄Rνµφ)
)
, (4.17)

where η�̄φ denotes inner derivation with respect to spinor η, i.e.

η�̄φ = (−1)sc

�!
ηBφBA1...A�ε

A1∧̄ . . . ∧̄εA� = (−1)sc

�!
(C−1)BEηBφEA1...A�ε

A1∧̄ . . . ∧̄εA�,
(4.18)

which is equivalent to

(η�̄φ)A1...A� = (�+ 1)(−1)scηBφBA1...A� . (4.19)

More generally, we have

(η�̄φ)E1...Eq,A1...A� = (�+ 1)(−1)scηBE1...Eq
φBA1...A� (4.20)

The product of the co-spinor representations ∆± can be decomposed as

∆+ ⊗∆− =
[m/2]∑
p=0

Λ2p. (4.21)
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The formula that relates the product of two co-spinors to forms is given by (2.12) after the
appropriate restrictions. Applying this to the second term in the Laplace operator, we find

∆1φ = −(−1)sC+sΓ

⎛
⎝C(ζ1, Γ

νΓ µζ2)∇µ∇νφ + 1

dimC(∆+)

[m2 ]∑
p=0

1

(2p)!

× C(ζ1, Γ
µΓ ρ1...ρ2pΓ νζ2)CΓρ1...ρ2p �̄Rµνφ

⎞
⎠ . (4.22)

In turn this can be written as

∆1φ = −(−1)sC+sΓ C(ζ1, ζ2)

⎛
⎝(gµν + iΩµν)∇µ∇νφ + 1

dimC(∆+)

[m2 ]∑
p=0

1

(2p)!

×
[

ip+1(2p+ 2)!

2p+1(2p+ 1)(p+ 1)!
ΩµνΩρ1ρ2 . . . Ωρ2p−1ρ2pCΓρ1...ρ2p �̄Rµνφ+ ip−1(2p)!

2p−2(p−1)!

× Ωρ2ρ3 . . . Ωρ2p−2ρ2p−1gρ1µgρ2pνCΓρ1...ρ2p �̄R1,1
µν φ

] ⎞
⎠ , (4.23)

where

R1,1
ρ1ρ2p

= 1

2
(RµνJ

µ
ρ1
Jνρ2p

+ Rρ1ρ2p ). (4.24)

is the (1,1) part of the curvature with respect to the almost complex structure J.
The Laplace operators ∆2 is given as in (4.17) but with the parallel spinors ζ1 and ζ2 inter-

changed. The effect that this can be easily computed from 4.17) using the symmetry properties
of CΓµ1...µq . In particular, we find that

Corollary 2. The ∆2 Laplace operator is

∆2φ = −(−1)sC+sΓ C(ζ1, ζ2)

(
(−1)sc (gµν − iΩµν)∇µ∇νφ + (−1)sc

dimC(∆+)

×
[m2 ]∑
p=0

[
(−i)p+1(2p+ 2)!

2p+1(2p+ 1)(p+ 1)!
ΩµνΩρ1ρ2 . . . Ωρ2p−1ρ2pCΓρ1...ρ2p �̄Rµνφ

+ (−i)p−1(2p)!

2p−2(p− 1)!
Ωρ2ρ3 . . . Ωρ2p−2ρ2p−1gρ1µgρ2pνCΓρ1...ρ2p �̄R1,1

µν φ

])
. (4.25)

4.4. The m = 4k, 4k + 2 case

In this case, d1, d2 : C− → C− and the inner product C−1 when restricted on C− is non-
degenerate. We define the adjoints δ1, δ2 : C− → C− of the d1, d2 operators, respectively. Again
there are two Laplace operators ∆1 = δ2d1 + d1δ2 and ∆2 = δ1d2 + d2δ1 The expressions of
these operators are the same as those in the previous section. In particular, we have that
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Corollary 3. The ∆1 Laplace operator is

∆1φ = −(−1)sC+sΓ C(ζ1, ζ2)

⎛
⎝(gµν + iΩµν)∇µ∇νφ + 1

dimC(∆+)

m
2∑

p=0

1

(2p)!

×
[

ip+1(2p+ 2)!

2p+1(2p+ 1)(p+ 1)!
ΩµνΩρ1ρ2 . . . Ωρ2p−1ρ2pCΓρ1...ρ2p �̄Rµνφ

+ ip−1(2p)!

2p−2(p− 1)!
Ωρ2ρ3 . . . Ωρ2p−2ρ2p−1gρ1µgρ2pνCΓρ1...ρ2p �̄R1,1

µν φ

])
. (4.26)

Similarly, the ∆2 Laplace operator is

∆2φ = −(−1)sC+sΓ C(ζ1, ζ2)

(
(−1)sc (gµν − iΩµν)∇µ∇νφ + (−1)sc

dimC(∆+)

×
m
2∑

p=0

[
(−i)p+1(2p+ 2)!

2p+1(2p+ 1)(p+ 1)!
ΩµνΩρ1ρ2 . . . Ωρ2p−1ρ2pCΓρ1...ρ2p �̄Rµνφ

+ (−i)p−1(2p)!

2p−2(p− 1)!
Ωρ2ρ3 . . . Ωρ2p−2ρ2p−1gρ1µgρ2pνCΓρ1...ρ2p �̄R1,1

µν φ

]⎞
⎠ . (4.27)

One could also define two more Laplace operators ∆̂1 = δ1d1 + d1δ1 and ∆̂2 = δ2d2 + d2δ2.
However, they vanish. This can be seen by a direct computation

∆̂1φ = −(−1)sC+sΓ

⎛
⎝C(ζ1, Γ

νΓ µζ1)∇µ∇νφ + 1

dimC(∆+)

m
2∑

p=0

1

(2p)!

× [
C(ζ1, Γ

µρ1...ρ2pνζ1) + (2p)(2p− 1)gµρ1C(ζ1, Γ
ρ2...ρ2p−1ζ1)gρ2pν

]

× CΓρ1...ρ2p �̄Rµνφ = 0

⎞
⎠ , (4.28)

because the (0,2) part of the curvature R vanishes. Similarly ∆̂2 = 0.

5. SU(m) holonomy, twisted complexes and algebraic spin cohomology

5.1. Twisted C± ⊗ E.

Let M a Riemannian manifold equipped with a connection ∇M such that hol(∇M) ⊆ SU(m). In
addition, let E be a vector bundle over M equipped with a connection ∇E and associated curvature
F.

As in the previous section one can construct two first order differential spin operators d1 and
d2 associated with the two parallel spinors of ∇M . Then one can use the vector bundle E to twist
the complexes C+ and C− as C+ ⊗ E and C− ⊗ E, respectively. Furthermore, one can use the
connection ∇E to extend d1 and d2 to the twisted complexes as it has been described in (3.9). We
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denote the extended operators with the same symbols. In particular, we have

Corollary 4. The operators d1 : C+ ⊗ E → C+ ⊗ E form = 4k + 1, 4k + 3 and d1 : C− ⊗ E →
C− ⊗ E for m = 4k, 4k + 2 are nilpotent, d2

1 = 0, if the (2,0) part of the curvature, R and F,
of both the connections ∇ and ∇E vanishes. Similarly, The operator d2 : C− ⊗ E → C− ⊗ E,
m = 4k, 4k + 1, 4k + 2, 4k + 3, is nilpotent, if the (0,2) part of the curvature, R and F, of both
the connections ∇ and ∇E vanishes. For m = 4k, 4k + 2, d1d2 + d2d1 = 0, if F = R = 0.

The Laplace operators can be easily computed. In particular, we find that

∆1φ = −(−1)sC+sΓ C(ζ1, ζ2)

⎛
⎝(gµν + iΩµν)∇µ∇νφ + 1

dimC(∆+)

[m2 ]∑
p=0

1

(2p)!

×
[

ip+1(2p+ 2)!

2p+1(2p+ 1)(p+ 1)!
ΩµνΩρ1ρ2 . . . Ωρ2p−1ρ2pCΓρ1...ρ2p �̄(Rµν + Fµν)φ

+ ip−1(2p)!

2p−2(p− 1)!
Ωρ2ρ3 . . . Ωρ2p−2ρ2p−1gρ1µgρ2pνCΓρ1...ρ2p �̄(R1,1

µν + F1,1
µν )φ

]⎞
⎠ .

(5.1)

Similarly, the ∆2 Laplace operator is

∆2φ = −(−1)sC+sΓ C(ζ1, ζ2)

(
(−1)sc (gµν − iΩµν)∇µ∇νφ + (−1)sc

dimC(∆+)

×
[m2 ]∑
p=0

[
(−i)p+1(2p+ 2)!

2p+1(2p+ 1)(p+ 1)!
ΩµνΩρ1ρ2 . . . Ωρ2p−1ρ2pCΓρ1...ρ2p �̄(Rµν + Fµν)φ

+ (−i)p−1(2p)!

2p−2(p− 1)!
Ωρ2ρ3 . . . Ωρ2p−2ρ2p−1gρ1µgρ2pνCΓρ1...ρ2p �̄(R1,1

µν + F1,1
µν )φ

]⎞
⎠ .

(5.2)

5.2. Twisted C±(E) complexes

Suppose that the parallel spinors with respect to the D connection on ∆± ⊗ E are in the
direction of either 1 ⊗ 1 or e1 ∧ . . . ∧ em ⊗ 1 and E is a vector bundle with a fibre inner product
h, ∇Eh = 0. One can construct an invariant inner product on ∆± ⊗ E as C−1 ⊗ h and extended
to the twisted complexes C±(E). We can again define operators d1 and d2. In particular, we have

Proposition 9. The operators d1 : C+(E) → C+(E) for m = 4k + 1, 4k + 3 and d1 : C−(E) →
C−(E) for m = 4k, 4k + 2 are nilpotent, d2

1 = 0, if the (2,0) part of the curvature of D vanishes.
Similarly, The operator d2 : C−(E) → C−(E),m = 4k, 4k + 1, 4k + 2, 4k + 3, is nilpotent, d2

2 =
0, if the (0,2) part of the curvature of D vanishes. For m = 4k, 4k + 2, d1d2 + d2d1 = 0, if the
curvature of D vanishes.
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Proof. The proof is similar to that we have already investigated in the previous sections for the
untwisted d1 and d2 operators. However, there is one difference. If E is not a line bundle, then
in the expression for d2

1 and d2
2 both symmetric and skew-symmetric CΓ (p) contribute. This is

unlike the untwisted case where only the skew-symmetric CΓ (p) contribute. However, there is no
additional restriction on the curvature of D. �

The Laplace operators ∆1 and ∆2 can be easily computed in this case. The expressions are as
in (5.1) and (5.2) with the curvature R and F replaced by the curvature of D.

5.3. Algebraic cohomologies

We have seen that the operator D on the complex Λ∗ ⊗ C is defined provided that CΓ is
skew-symmetric which is the case for C = A if m = 4k, 4k + 3 and for C = B if m = 4k + 2.
Moreover, D restricts on C±, D : C± → C± if m = 4k + 3. Therefore, we conclude that the D
operator can be defined on the complexesΛ∗ ⊗ C± andΛ∗ ⊗ C± ⊗ E only form = 4k + 3. The
operator D can also defined for twisted complexes Λ∗ ⊗ C±(E) but we shall not investigate this
further here.

Corollary 5. The algebraic operator D anticommutes with both d1 and d2 differential operators

d1D+Dd1 = d2D+Dd2 = 0. (5.3)

Therefore, one can define the operators d1 +D and d2 +D which are nilpotent provided
d2

1 = d2
2 = 0. The cohomology of d1 +D and d2 +D can be computed using spectral sequences.

We shall not do a general computation. Instead, we shall give the cohomology of the operator
d2 +D in the special case where M is a six-dimensional Calabi-Yau manifold.

6. Complex manifolds with holonomy SU(m) and spin cohomology

It is clear from the results of the previous section that complex spin cohomology is related
to the Dolbeault cohomology. Here, we shall establish the precise relation and we shall give the
classes of the spin cohomology in terms of those of the Dolbeault cohomology, see e.g. [11,12].

6.1. Spin and Dolbeault cohomologies

Let M be a complex manifold equipped with a connection ∇, hol(∇) ⊆ SU(m). On M, it is
known that

∆ = ⊕qΛ
0,q = Λ0,∗. (6.1)

This can be easily seen from ∆ = Λ0,q(1), where Λ0,q acts on 1 with Clifford multiplication. In
particular, we have ∆+ = Λ0,even and ∆− = Λ0,odd. Thus,

C+ = Λ∗(Λ0,even)

C− = Λ∗(Λ0,odd)
(6.2)

Write ∆− = Λ0,1 ⊕ Z, where Z = ⊕p≥1Λ
0,2p+1. The complex C− can now be decomposed as

C�− = ⊕p+q=�Λ0,p ⊗Λq(Z). (6.3)
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Proposition 10.

d2 = ∂̄ : Λ0,p ⊗Λq(Z) → Λ0,p+1 ⊗Λq(Z). (6.4)

Proof. To show this, we first evaluate the action of d2 onΛ0,1 ⊂ C−. Indeed let ηiei ∈ Λ0,1, then
we have

d2(ηie
i) = Λ(−1)

1
2m(m−1)(∇i + i∇i+m)ηje

i∧̄ej = Λ(−1)
1
2m(m−1)∂̄iηje

i ∧ ej, (6.5)

where Λ = 1 for the A inner product and Λ = im for B inner product. After suppressing the
numerical coefficient which is inconsequential for the computation of cohomology, we have
d2 = ∂̄ on Λ0,1. Using the definition of the ∧̄ product, it is straightforward to extend the proof to
the rest of the complex C−. �

Corollary 6. Let M be a complex manifold as described in the beginning of the section. Then the
spin cohomology

H�
d2

(C−) = ⊕p+q=�H
0,p
∂̄

(Λq(Z)). (6.6)

Therefore, the spin cohomology of the d2 operator can be computed in terms of Dolbeault coho-
mology of a twisted complex by the bundle Λ∗(Z), where Z = ⊕p≥1Λ

0,2p+1.

A direct consequence of this is that

H�
d2

(C− ⊗ E) = ⊕p+q=�H
0,p
∂̄

(Λq(Z) ⊗ E). (6.7)

Using the corollary, we can also compute the index of the spin complex (C−, d2) in terms of the
index of the twisted ∂̄ complex. In particular, we have

Indexd2 (C−) =
∑
q≥0

(−1)qIndex∂̄(Λ
q(Z)) (6.8)

or more generally

Indexd2 (C− ⊗ E) =
∑
q≥0

(−1)qIndex∂̄(Λ
q(Z) ⊗ E). (6.9)

It remains to investigate the cohomology of d1. We shall consider the casesm = 4k + 1, 4k + 3
and m = 4k, 4k + 2 separately. In the former case d1 : C+ → C+. Writing ∆+ = Λ0,m−1 ⊕W ,
where W = ⊕

p<m−1
2
Λ0,2p, we have

C�+ = ⊕p+q=�Λp(Λ0,m−1) ⊗Λq(W), (6.10)

and

d1 : Λp(Λ0,m−1) ⊗Λq(W) → Λp+1(Λ0,m−1) ⊗Λq(W). (6.11)

Since there is a SU(m) structure, we can identify Λ0,m−1 = Λ1,0, Λp(Λ0,m−1) = Λp,0 and

d1 = ∂ : Λp,0 ⊗Λq(W) → Λp+1,0 ⊗Λq(W). (6.12)

Therefore, we conclude that

H�
d1

(C+) = ⊕p+q=�H
p,0
∂ (Λq(W)). (6.13)

Thus, H∗
d1

(C+) = H∗
d2

(C−). The same applies for m = 4k, 4k + 2.
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6.2. Algebraic operations on twisted complexes

On complex manifolds with hol(∇) ⊆ SU(m) apart from the differential spin operators d1, d2,
there is also an algebraic spin operator D providedm = 4k + 3. We shall focus on the twisted spin
cohomology associated with the operators d2 and D. In the context of complex geometry, there are
several versions that one can consider. In particular, one can defined a twisted spin cohomology
on Λ∗ ⊗ C− as we have already mentioned in Section 5.3. However, it is also possible to twist
C− with either Λ∗,0 or Λ0,∗. In each of these cases the twisted spin cohomology of the operator
d2 +D, or equivalently ∂̄ +D, can be computed using a spectral sequence.

The twisted complex C = Λ∗ ⊗ C− is a double complex, Cp,�, with grading induced from
the space of forms Λ∗ and that of C−. However, in this grading, d2 = ∂̄ and D do not act with
horizontal and vertical operations. In particular, d2 : Cp,� → Cp,�+1 and D : Cp,� → Cq−1,�+2.
It is therefore convenient to introduce a new grading as

C[−p,�+2p] = Cp,� = Λp ⊗ C�−. (6.14)

Note know that d1 : C[−p,�+2p] → C[−p,�+2p+1] and D : C[−p,�+2p] → C[−p+1,�+2p] as ex-
pected. The twisted complexes Λ∗,0 ⊗ C− and Λ0,∗ ⊗ C− can be treated in a similar way. The
machinery of spectral sequences can now be used to do the computation, see e.g [10] and refer-
ences within. Instead of developing the general theory of computing the cohomology of ∂̄ +D

for the various complexes above, we shall give the cohomology of (Λ∗,0 ⊗ C−, ∂̄ +D) for six-
dimensional Calabi-Yau manifolds in an example below.

6.3. Spinc structures and spin cohomology

Let M be a complex manifold equipped with a spinc structure and compatible connection ∇,
hol(∇) ⊆ SU(m). Suppose that L is a (locally defined) complex line bundle associated with the
spinc structure. On M, it is known that

∆∗ ⊗ L = ⊕qΛ
0,q = Λ0,∗. (6.15)

This is similar to the standard complex case, we have investigated. In particular, we have ∆+ ⊗
L = Λ0,even and ∆− = Λ0,odd. Thus,

C+(L) = Λ∗(Λ0,even)

C−(L) = Λ∗(Λ0,odd)
(6.16)

Write ∆− ⊗ L = Λ0,1 ⊗ L⊕ Z⊗ L, where Z = ⊕p≥1Λ
0,2p+1. The complex C−(L) can now

be decomposed as

C�−(L) = ⊕p+q=�Λp(Λ0,1) ⊗Λq(Z). (6.17)

Proposition 11.

d2 = ∂̄ : Λp(Λ0,1) ⊗Λq(Z⊗ L) → Λp+1(Λ0,1) ⊗Λq(Z). (6.18)

Proof. To show this, we first evaluate the action of d2 on Λ0,1 ⊂ C−(L). Indeed let ηiei ∈ Λ0,1,
then we have

d2(ηie
i) = Λ(−1)(1/2)m(m−1)(∇i + i∇i+m)ηje

i∧̄ej = Λ(−1)(1/2)m(m−1)∂̄iηje
i ∧ ej,

(6.19)

where Λ = 1 for the A inner product and Λ = im for B inner product. After suppressing the
numerical coefficient which is inconsequential for the computation of cohomology, we have
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d2 = ∂̄ on Λ0,1. Using the definition of the ∧̄ product, it is straightforward to extend the proof to
the rest of the complex C−(L). �

Corollary 7. Let M be a complex Spinc manifold as described in the beginning of the section.
Then the spin cohomology

H�
d2

(C−(L)) = ⊕p+q=�H
0,p
∂̄

(Λq(Z)). (6.20)

Therefore, the spin cohomology of the d2 operator can be computed in terms of Dolbeault coho-
mology of a twisted complex by the bundle Lp ⊗Λq(Z), where Z = ⊕p≥1Λ

0,2p+1.

7. Spin cohomology and six-dimensional Calabi-Yau manifolds

7.1. Differential spin cohomology

Applying the general theory of the previous section to this case, we have ∆− = Λ0,odd =
Λ0,1 ⊕Λ0,3. In addition for six-dimensional Calabi-Yau manifolds Λ0,3 is trivial line bundle.
Using these, we find that

C�− = Λ0,� ⊕Λ0,�−1 (7.1)
and

d2 = ∂̄ : Λ0,� ⊕Λ0,�−1 → Λ0,�+1 ⊕Λ0,�. (7.2)
Therefore,

H�
d2

(C−) = H
0,�
∂̄

⊕H
0,�−1
∂̄

. (7.3)
In particular for an irreducible six-dimensional Calabi-Yau manifold, we have that

H0
d2

= C, H1
d2

= C, H2
d2

= 0, H3
d2

= C, H4
d2

= C. (7.4)

It is also straightforward to compute the cohomology of the twisted complex (Λ∗,0 ⊗ C−, d2).
In particular, we find that

H
p,�
d2

(Λ∗,0 ⊗ C−) = H
p,�

∂̄
⊕H

p,�−1
∂̄

. (7.5)

7.2. Twisted complexes and algebraic spin cohomology

To compute the cohomology of the complex (Λ∗,0 ⊗ C−, d2 +D), we first investigate the
complex (Λ∗,0 ⊗ C−,D). Using (7.1), we find that the operatorD : Λp,0 ⊗ C�− → Λp−1,0 ⊗ C�+2

−
acts as

D : Λp,0 ⊗ [Λ0,� ⊕Λ0,�−1] → Λp−1 ⊗ [Λ0,�+2 ⊕Λ0,�+1] (7.6)
or equivalentlyD : Λp,� ⊕Λp,�−1 → Λp−1,�+2 ⊕Λp−1,�+1. Since it acts on the two parts in the
sum separately, it is enough to consider only its action in the first part. After some computation,
one finds that

Dψ = −(−1)q
1

(p− 1)!q!2
ψγα1...αp−1,β̄3...β̄q+2

×εγ
β̄1β̄2

eα1 ∧ . . . ∧ eαp−1 ∧ eβ̄1 ∧ eβ̄2 ∧ . . . ∧ eβ̄q+2 , (7.7)

where ψ ∈ Λp,q.
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Next we shall compute the cohomology of the double complex (Λ∗,∗, ∂̄ +D) using a spectral
sequence, see e.g. [10] and references within. The most convenient filtration is that for which
E1 = H

p,q

∂̄
. Then from the general theory of spectral sequences for double complexes E2 =

HDH∂̄ and E2 is graded as the double complex. It is known that for six-dimensional irreducible
Calabi-Yau manifolds the non-vanishing Dolbeault groups are H0,0

∂̄
, H1,1

∂̄
, H2,1

∂̄
, H1,2

∂̄
H

2,2
∂̄

and

H
3,3
∂̄

. Moreover, H3,0
∂̄

= H
0,3
∂̄

= C which are generated by the parallel (3,0)- and (0,3)-forms,
respectively. To compute E2 observe that

0 → H
3,0
∂̄

D→H
2,2
∂̄

→ 0 (7.8)

and

0 → H
1,1
∂̄

D→H
0,3
∂̄

→ 0, (7.9)

and the rest of the cohomology groups ofE1 = H
p,q

∂̄
live inE2. It is easy to see that KerD|

H
3,0
∂̄

=
{0}. Therefore, E3,0

2 vanishes. In addition D(H3,0
∂̄

) = C〈Ω ∧Ω〉, where Ω is the Kähler form.

Since DH2,2
∂̄

= 0, we conclude that E2,2
2 = H

2,2
∂̄
/C〈Ω ∧Ω〉, i.e. E2,2

2 = PH
2,2
∂̄

is generated by
the primitive (2,2) harmonic forms.

Next observe that

KerD|
H

1,1
∂̄

= {α ∈ H1,1
∂̄

such that Ω · α = 0}. (7.10)

Therefore, E1,1
2 = PH

1,1
∂̄

is generated by the primitive (1,1) harmonic forms. In addition we

have that DH1,1
∂̄

= H
0,3
∂̄

, therefore E0,3
2 = 0. Thus, the only non-vanishing groups are E0,0

2 =
C, E

2,1
2 = H

2,1
∂̄
, E

1,2
2 = H

1,2
∂̄
, E

1,1
2 = PH

1,1
∂̄
, E

2,2
2 = PH

2,2
∂̄

and E3,3
2 = C.

It remains to show that E2 = E∞. This is easily verified by computing the action of the
differential d2 of E2. For this, we need to convert to the grading of the double complex Λ∗,∗ for
which ∂̄ : Λ[m,n] → Λ[m,n+1] acts vertically andD : Λ[m,n] → Λ[m+1,n] acts horizontally. As we
have explained (m, n) = (−p, 2p+ q), i.e. E[−p,2p+q]

2 = H
p
DH

q

∂̄
. The differential d2 : E[m,n]

2 →
E

[m−2,n−1]
2 . It is easy then to see that the d2 differential is the zero map andE2 = E∞. Therefore,

the cohomology of the operator d +D is given by E2. Thus, we have shown the proposition.

Proposition 12. Let M be an irreducible six-dimensional Calabi-Yau manifold. The non-
vanishing cohomology groups of the complex (Λp,q, ∂̄ +D) are H0

∂̄+D = H
0,0
∂̄

= C, H2
∂̄+D =

PH
1,1
∂̄
, H3

∂̄+D = H
2,1
∂̄

⊕H
1,2
∂̄
, H4

∂̄+D = PH
2,2
∂̄

and H6
∂̄+D = H

3,3
∂̄

= C.

Finally, we have H�
∂̄+D(Λ∗,0 ⊗ C−) = H�

∂̄+D ⊕H�−1
∂̄+D.

8. Manifolds with connections with holonomy Sp(k) and spin cohomology

Let M be a Riemannian manifold which admits a connection ∇ with holonomy Sp(k). In this
case, there are k + 1 parallel spinors and so k + 1 spin differential operators that one can define.
The spin differential operators associated with the parallel spinors 1 and e1 ∧ . . . ∧ e2k are the
same as the d1 and d2 spin differential operators that we have investigated for complex manifolds.
There are another k − 1 spin differential operators dΩk associated with the Ωk, 1 ≤ k ≤ k − 1,
parallel spinors of section two. Since Ω ∈ Λ2 and m = 2k even, dΩk : C− → C−. We shall not
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present a complete analysis of all cases. Instead we shall focus on the spin differential operator
d0 = dΩk−1 associated with the parallel spinor Ωk−1.

As we have explained for complex manifolds, C− can be decomposed as

C�− = ⊕p+q=�Λ0,p ⊗Λq(Z). (8.1)

Proposition 13. Let M be a hyperKähler manifold, then

d0 = K�∂ : Λ0,p ⊗Λq(Z) → Λ0,p+1 ⊗Λq(Z), (8.2)

where K is the second complex structure on M.

Proof. To show this, we first evaluate the action of d0 onΛ0,1 ⊂ C−. Indeed let ηiei ∈ Λ0,1, then
we have

d0(ηie
i) = Λ〈ω,Γ iek〉(∇i − i∇i+m)ηje

k∧̄ej = ΛKik∂iηje
k ∧ ej, (8.3)

where Λ is inconsequential numerical coefficient that depends on the inner product and the
normalization of the parallel spinor and 〈v,Kw〉 = Ω(v,w). Thus, we have that d2 = K�∂ on
Λ0,1. Using the definition of the ∧̄ product, it is straightforward to extend the proof to the rest of
the complex C−. �

9. Real spin cohomologies

So far we have investigated the complex spinor cohomologies. Now we shall turn to investigate
the real ones. The real spinor representations for m = 4k, 4k + 1, 4k + 3 can be constructed by
imposing a reality condition on the complex representations. These reality conditions are

η = ±A(η̄), η ∈ ∆±, m = 4k

η = A(η̄), η ∈ ∆+ ⊕∆−, m = 4k + 1

η = B(η̄), η ∈ ∆+ ⊕∆−, m = 4k + 3

(9.1)

and ∆±
R

= {η ∈ ∆±, s.t. η = ±A(η̄)},∆R = {η ∈ ∆+ ⊕∆−, s.t. η = A(η̄)} and ∆R = {η ∈
∆+ ⊕∆−, s.t. η = B(η̄)}, respectively.

9.1. SU(m) invariant spinors

We begin with a summary of the properties of real spin representation in various cases.

9.1.1. m=4k
The real parallel spinors in the SU(4k) case are

τ1 = 1√
2

(1 + e1 ∧ . . . ∧ em), τ2 = i√
2

(1 − e1 ∧ . . . ∧ em). (9.2)

Both parallel spinors τ1, τ2 ∈ ∆+
R

. We can again define spin cohomologies d1, d2 associated with
τ1, τ2 for C = A on the real complex CR−. Thus, sc = 0, sΓ = 1. The decomposition of the real
spinor representations is

∆±
R

⊗∆±
R

=
2k−1∑
p=0

Λ
2p
R

⊕Λm±
R
. (9.3)
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9.2. m = 4k + 1

The real parallel spinors are

τ1 = 1√
2

(1 + e1 ∧ . . . ∧ em), τ2 = i√
2

(1 − e1 ∧ . . . ∧ em). (9.4)

The parallel spinors τ1, τ2 ∈ ∆R. We can again define spin cohomologies d1, d2 associated with
τ1, τ2 for C = A on the real complex CR). Thus, sc = 0, sΓ = 0. The decomposition of the real
spinor representations is

∆R ⊗∆R =
2m∑
p=0

Λ
2p
R
. (9.5)

9.3. m = 4k + 3

The real parallel spinors are

τ1 = 1√
2

(1 + ie1 ∧ . . . ∧ em), τ2 = 1√
2

(i1 + e1 ∧ . . . ∧ em). (9.6)

The parallel spinors τ1, τ2 ∈ ∆R. We can again define spin cohomologies d1, d2 associated with
τ1, τ2 for C = B on the real complex CR. Thus, sc = 0, sΓ = 1. The decomposition of the real
spinor representations is

∆R ⊗∆R =
2m∑
p=0

Λ
2p
R
. (9.7)

In all the above cases we find the following:

Theorem 6. The operators d1, d2 are nilpotent iff the curvature of the connection ∇ vanishes.

Proof. This is a consequence of the results we have already demonstrated in Sections 4 and 6.
�

We also have that

Theorem 7. The Laplacians ∆1,∆2 of the operators d1, d2 are

∆2φ = ∆1φ = gµν∇µ∇νφ (9.8)

Proof. This is a consequence of the results we have already demonstrated in Section 4. �

Corollary 8. The real spin cohomologies H∗(CR) defined above are generated by the parallel
elements in CR with respect to ∇.

Proof. This follows from a partial integration formula and the fact that the inner productC = A,B

restricted in ∆R is definite. �

A class of manifolds which we can define a real spin cohomology are group manifolds equipped
with the left or right invariant connections. One can also defined twisted real spin cohomology
but we shall not pursue this further here.
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10. Spin(7) spin cohomology

The Spin(7) invariant spinor is ζ = 1√
2

(e1 − e2 ∧ e3 ∧ e4). Therefore, ζ ∈ ∆−. So the spin
cohomology operator is d : C+ → C+.

Theorem 8. The spin operator is nilpotent, d2 = 0, if the connection ∇ is the Levi-Civita con-
nection of a metric on the manifold M with holonomy Spin(7).

Proof. The representations ∆± are real. The map τ : ∆+ → Λ1(R8) given by τ(η) =
CΓµ(ζ, η)eµ = C

µ
ζ (η)eµ induces an isomorphism between the ∆+ and the vector representa-

tions, C = A. This can be easily seen by observing that there is a (real) basis in ∆+ such that τ
is diagonal. This basis is

1 + e1 ∧ . . . ∧ e4, i(1 − e1 ∧ . . . ∧ e4), i(e1 ∧ e2 + e3 ∧ e4), (e1 ∧ e2 − e3 ∧ e4),

e1 ∧ e3 + e2 ∧ e4, i(e1 ∧ e3 − e2 ∧ e4), i(e2 ∧ e3 + e1 ∧ e4), (e2 ∧ e3 − e1 ∧ e4).

(10.1)

In addition we have that

d2φ = 1

2
C
µ
ζ ∧̄CνζRµνφ. (10.2)

The right-hand-side will vanish if the curvature R of the connection ∇ is that of a Levi-Civita
connection for a metric with holonomy Spin(7) by virtue of the Bianchi identity. �
Corollary 9. Let M be a manifold equipped with a metric with holonomy Spin(7). ThenH∗(C+) =
H∗
dR(M).

Proof. The map τ is an isomorphism between the spin cohomology complex (C−, d) and the de
Rham complex (Λ∗(M), d). Therefore, it induces an isomorphism in cohomology. �

11. G2 spin cohomology

The spinor Spin(7) representation ∆ decomposes under G2 as ∆ = R ⊕Λ1(R7). The G2
invariant spinor is ζ = 1√

2
(e1 − e2 ∧ e3 ∧ e4). As in the previous cases, one can define a linear

operator d on C using the spinor ζ.

Theorem 9. Let M a manifold equipped with a metric g with holonomy contained in G2. The
operator d associated to the Levi-Civita connection is nilpotent.

Proof. Since ∆ = R ⊕Λ1(R7), we have that C� = Λ�(M) ⊕Λ�−1(M). Moreover, τ : ∆ →
Λ1(R7) such that τ(η) = CΓµ(ζ, η)eµ is onto and has kernel R〈ζ〉. Next

d2φ = 1

2
CΓµ∧̄CΓ ν∧̄Rµνφ (11.1)

which vanishes because of the Bianchi identity where R is the curvature of the G2 metric. �
Corollary 10. Let M a manifold equipped with a metric with holonomy G2. Then H�(C) =
H�
dR(M) ⊕H�−1

dR (M).

Proof. The map τ induces an isomorphism between the two complexes. This establishes the
isomorphism between the cohomologies. �
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